Main Article Content

Abstract

This meta-analysis and bibliographic study aims to compare the effectiveness of biological and chemical control methods against Spodoptera frugiperda, using the mortality rate percentage as the primary parameter. Data were pooled from studies indexed in Scopus from 2019 to 2024. Biological agents include species like Telenomus remus, Bacillus thuringiensis, and Trichogramma spp., while chemical agents include substances like emamectin benzoate, chlorpyrifos, and lambda-cyhalothrin. The research spans across multiple continents, highlighting significant contributions from China, Mexico, Brazil, Burkina Faso, Ethiopia, India, Indonesia, Pakistan, Ghana, Thailand, Cameroon, and Malawi, indicating a global effort to manage this pest. ANCOVA was employed to compare the efficacy of these control methods, controlling for covariates such as initial infestation levels and environmental conditions. The analysis confirmed the normality (sig. 0.51) and homogeneity of the data variances(sig.0.79), and linear relationships between covariates and the dependent variable were established. The final comparison revealed no significant difference between the effectiveness of biological and chemical agents in controlling Spodoptera frugiperda(sig. 0.279) This comprehensive assessment enhances the reliability and validity of the findings, providing insights for policymakers and agricultural practitioners to develop more effective pest management strategies and allocate resources efficiently.

Article Details

How to Cite
Pradiana, M., & Ramdhani, F. (2023). Meta-Analysis and Bibliographic Study: Effectiveness of Biological and Chemical Agents in Controlling Spodoptera frugiperda Based on Mortality Rate from Scopus-Indexed Journals (2019-2024). Edubiologica: Jurnal Penelitian Ilmu Dan Pendidikan Biologi, 11(2), 66-80. https://doi.org/10.25134/edubiologica.v11i2.10291

References

  1. Abang, A. F., Nanga, S. N., Kuate, A. F., Kouebou, C., Suh, C., Masso, C., Saethre, M. G., & Mokpokpo Fiaboe, K. K. (2021). Natural enemies of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in different agro-ecologies. Insects, 12(6), 1–23. https://doi.org/10.3390/insects12060509
  2. Ahissou, B. R., Sawadogo, W. M., Bonzi, S., Baimey, H., Somda, I., Bokonon-Ganta, A. H., & Verheggen, F. J. (2021). Natural enemies of the fall armyworm Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in Burkina Faso. Tropicultura, 39(3), 1–21. https://doi.org/10.25518/2295-8010.1881
  3. Ashok, K., Balasubramani, V., Kennedy, J. S., Geethalakshmi, V., Jeyakumar, P., & Sathiah, N. (2021). Effect of elevated temperature on the population dynamics of fall armyworm, Spodoptera frugiperda. Journal of Environmental Biology, 42(4). https://doi.org/10.22438/jeb/42/4(SI)/MRN-1525a
  4. Cabrera-Asencio, I., Viteri, D. M., & Linares-Ramírez, A. M. (2023). ARCHYTAS MARMORATUS (TOWNSEND) AND LESPESIA SPP. (DIPTERA: TACHINIDAE) PARASITOIDS OF SPODOPTERA FRUGIPERDA (J.E. SMITH) (LEPIDOPTERA: NOCTUIDAE) ON ZEA MAYS L. IN SOUTHERN PUERTO RICO. The Journal of Agriculture of the University of Puerto Rico, 107(2), 187–190. https://doi.org/10.46429/jaupr.v107i2.21243
  5. Deshmukh, S., Pavithra, H. B., Kalleshwaraswamy, C. M., Shivanna, B. K., Maruthi, M. S., & Mota-Sanchez, D. (2020). Field Efficacy of Insecticides for Management of Invasive Fall Armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on Maize in India. Florida Entomologist, 103(2), 221. https://doi.org/10.1653/024.103.0211
  6. dos Santos, C. A. M., do Nascimento, J., Gonçalves, K. C., Smaniotto, G., de Freitas Zechin, L., da Costa Ferreira, M., & Polanczyk, R. A. (2021). Compatibility of Bt biopesticides and adjuvants for Spodoptera frugiperda control. Scientific Reports, 11(1), 1–8. https://doi.org/10.1038/s41598-021-84871-w
  7. Fiaboe, K. R., Fening, K. O., Kofi Gbewonyo, W. S., & Deshmukh, S. (2023). Bionomic responses of Spodoptera frugiperda (J. E. Smith) to lethal and sublethal concentrations of selected insecticides. PLoS ONE, 18(11 November), 1–21. https://doi.org/10.1371/journal.pone.0290390
  8. García-González, F., Rios-Velasco, C., & Iglesias-Pérez, D. (2020). Chelonus and Campoletis Species as Main Parasitoids of Spodoptera frugiperda (J.E. Smith)1 in Forage Maize of Lagunera Region, Mexico. Southwestern Entomologist, 45(3). https://doi.org/10.3958/059.045.0306
  9. Garlet, C. G., Moreira, R. P., Gubiani, P. da S., Palharini, R. B., Farias, J. R., & Bernardi, O. (2021). Fitness Cost of Chlorpyrifos Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on Different Host Plants. Environmental Entomology, 50(4), 898–908. https://doi.org/10.1093/ee/nvab046
  10. Guan, F., Zhang, Z., Lin, Y., Liu, X., Wang, X., Yang, Y., Carrière, Y., & Wu, Y. (2023). Susceptibility and diagnostic concentration for Bacillus thuringiensis toxins and newer chemical insecticides in Spodoptera frugiperda (Lepidoptera: Noctuidae) from China. Journal of Economic Entomology, 116(5), 1830–1837. https://doi.org/10.1093/jee/toad176
  11. Haq, I. U., Muhammad, M., Yuan, H., Ali, S., Abbasi, A., Asad, M., Ashraf, H. J., Khurshid, A., Zhang, K., Zhang, Q., & Liu, C. (2022). Satellitome Analysis and Transposable Elements Comparison in Geographically Distant Populations of Spodoptera frugiperda. Life, 12(4). https://doi.org/10.3390/life12040521
  12. Herlinda, S., Gustianingtyas, M., Suwandi, S., Suharjo, R., Sari, J. M. P., & Lestari, R. P. (2021). Endophytic fungi confirmed as entomopathogens of the new invasive pest, the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), infesting maize in South Sumatra, Indonesia. Egyptian Journal of Biological Pest Control, 31(1). https://doi.org/10.1186/s41938-021-00470-x
  13. Idrees, A., Qadir, Z. A., Afzal, A., Ranran, Q., & Li, J. (2022). Laboratory efficacy of selected synthetic insecticides against second instar invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. PLoS ONE, 17(5 May), 1–14. https://doi.org/10.1371/journal.pone.0265265
  14. Kelita Phambala, Y. T., & Philip C Stevenson, & S. R. B. T. K. V. H. K. (2020). Bioactivity of Common Pesticidal Plants on Fall. Plants, 9(112), 1–10.
  15. Kenis, M. (2023). Prospects for classical biological control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in invaded areas using parasitoids from the Americas. Journal of Economic Entomology, 116(2), 331–341. https://doi.org/10.1093/jee/toad029
  16. Lee, K., McDermott, S., & Fernandez, L. (2024). Using economics to inform and evaluate biological control programs: opportunities, challenges, and recommendations for future research. In BioControl (Vol. 69, Issue 3). https://doi.org/10.1007/s10526-024-10244-7
  17. Li, Y. P., Yao, S. Y., Feng, D., Haack, R. A., Yang, Y., Hou, J. L., & Ye, H. (2023). Dispersal Behavior Characters of Spodoptera frugiperda Larvae. Insects, 14(6). https://doi.org/10.3390/insects14060488
  18. Liu, Z. K. (2022). Sublethal effects of emamectin benzoate on Spodoptera frugiperda ( Lepidoptera : Noctuidae ). Agriculture, December 2018, 959–971.
  19. Makgoba, M. C., Tshikhudo, P. P., Nnzeru, L. R., & Makhado, R. A. (2021). Impact of fall armyworm (Spodoptera frugiperda) (J.E. Smith) on small-scale maize farmers and its control strategies in the Limpopo province, South Africa. Jàmbá Journal of Disaster Risk Studies, 13(1). https://doi.org/10.4102/jamba.v13i1.1016
  20. Oh, I. S. (2020). Beyond Meta-Analysis: Secondary Uses of Meta-Analytic Data. In Annual Review of Organizational Psychology and Organizational Behavior (Vol. 7). https://doi.org/10.1146/annurev-orgpsych-012119-045006
  21. Papadimitropoulou, K., Stijnen, T., Riley, R. D., Dekkers, O. M., & le Cessie, S. (2020). Meta‐analysis of continuous outcomes: Using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment‐by‐baseline modification. Research Synthesis Methods, 11(6), 780–794. https://doi.org/10.1002/jrsm.1434
  22. Paredes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V. (2021). Advances in control strategies against Spodoptera frugiperda. A review. In Molecules (Vol. 26, Issue 18). https://doi.org/10.3390/molecules26185587
  23. Perier, J. D., Haseeb, M., Kanga, L. H. B., Meagher, R. L., & Legaspi, J. C. (2022). Intraguild Interactions of Three Biological Control Agents of the Fall Armyworm Spodoptera frugiperda (JE Smith) in Florida. Insects, 13(9), 815. https://doi.org/10.3390/insects13090815
  24. Pinkie, C., Devika, J., & Majidha, P. A. (2021). Bibliometric Analysis and Challenges in Biofuel Production using Petroplants. Journal of Renewable Energies, 221(Special Issue). https://doi.org/10.54966/jreen.v1i1.1056
  25. Pittarate, S., Rajula, J., Rahman, A., Vivekanandhan, P., Thungrabeab, M., Mekchay, S., & Krutmuang, P. (2021). Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects, 12(11), 1–11. https://doi.org/10.3390/insects12111017
  26. Qi, H., Rizopoulos, D., & van Rosmalen, J. (2022). Incorporating historical control information in ANCOVA models using the meta‐analytic‐predictive approach. Research Synthesis Methods, 13(6), 681–696. https://doi.org/10.1002/jrsm.1561
  27. Sisay, B., Tefera, T., Wakgari, M., Ayalew, G., & Mendesil, E. (2019). The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize. Insects, 10(2). https://doi.org/10.3390/insects10020045
  28. Smith, J. E., Noctuidae, L., Ahmed, K. S., Idrees, A., Majeed, M. Z., Majeed, M. I., Shehzad, M. Z., Ullah, M. I., Afzal, A., & Li, J. (2022). Synergized toxicity of promising plant sxtracts and synthetic chemicals against fall armyworm Spodoptera frugiperda. Agronomy, 12(1289).
  29. Stenberg, J. A., Sundh, I., Becher, P. G., Björkman, C., Dubey, M., Egan, P. A., Friberg, H., Gil, J. F., Jensen, D. F., Jonsson, M., Karlsson, M., Khalil, S., Ninkovic, V., Rehermann, G., Vetukuri, R. R., & Viketoft, M. (2021). When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science, 94(3), 665–676. https://doi.org/10.1007/s10340-021-01354-7
  30. Tay, W. T., Meagher, R. L., Czepak, C., & Groot, A. T. (2023). Spodoptera frugiperda : Ecology, Evolution, and Management Options of an Invasive Species. Annual Review of Entomology, 68(1), 299–317. https://doi.org/10.1146/annurev-ento-120220-102548
  31. Tepa-Yotto, G. T., Chinwada, P., Rwomushana, I., Goergen, G., & Subramanian, S. (2022). Integrated management of Spodoptera frugiperda 6 years post detection in Africa: a review. Current Opinion in Insect Science, 52, 100928. https://doi.org/10.1016/j.cois.2022.100928
  32. Tepa-yotto, G. T., Tonnang, H. E. Z., Goergen, G., Subramanian, S., Kimathi, E., Abdel-rahman, E. M., Flø, D., Thunes, K. H., Fiaboe, K. K. M., Niassy, S., Bruce, A., Mohamed, S. A., Tam, M., Ekesi, S., & Sæthre, M. (2021). Global Habitat Suitability of Spodoptera frugiperda. Parasitoids Considered for Its Biological Control, 2(1).
  33. Yan, X. R., Wang, Z. Y., Feng, S. Q., Zhao, Z. H., & Li, Z. H. (2022). Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change. In Insects (Vol. 13, Issue 11). https://doi.org/10.3390/insects13110981
  34. Yang, F., Wang, Z., & Kerns, D. L. (2022). Resistance of Spodoptera frugiperda to Cry1, Cry2, and Vip3Aa Proteins in Bt Corn and Cotton in the Americas: Implications for the Rest of the World. Journal of Economic Entomology, 115(6), 1752–1760. https://doi.org/10.1093/jee/toac099
  35. Yang, L., Li, F., Xin, L., Xing, B., Pan, X., Shi, X., Li, J., & Wu, S. (2022). Performance of three Trichogramma species as biocontrol agents on Spodoptera frugiperda eggs. Journal of Applied Entomology, 146(8), 1019–1027. https://doi.org/10.1111/jen.13042