Meta-Analysis and Bibliographic Study: Effectiveness of Biological and Chemical Agents in Controlling Spodoptera frugiperda Based on Mortality Rate from Scopus-Indexed Journals (2019-2024)
Abstract
This meta-analysis and bibliographic study aims to compare the effectiveness of biological and chemical control methods against Spodoptera frugiperda, using the mortality rate percentage as the primary parameter. Data were pooled from studies indexed in Scopus from 2019 to 2024. Biological agents include species like Telenomus remus, Bacillus thuringiensis, and Trichogramma spp., while chemical agents include substances like emamectin benzoate, chlorpyrifos, and lambda-cyhalothrin. The research spans across multiple continents, highlighting significant contributions from China, Mexico, Brazil, Burkina Faso, Ethiopia, India, Indonesia, Pakistan, Ghana, Thailand, Cameroon, and Malawi, indicating a global effort to manage this pest. ANCOVA was employed to compare the efficacy of these control methods, controlling for covariates such as initial infestation levels and environmental conditions. The analysis confirmed the normality (sig. 0.51) and homogeneity of the data variances(sig.0.79), and linear relationships between covariates and the dependent variable were established. The final comparison revealed no significant difference between the effectiveness of biological and chemical agents in controlling Spodoptera frugiperda(sig. 0.279) This comprehensive assessment enhances the reliability and validity of the findings, providing insights for policymakers and agricultural practitioners to develop more effective pest management strategies and allocate resources efficiently.References
Abang, A. F., Nanga, S. N., Kuate, A. F., Kouebou, C., Suh, C., Masso, C., Saethre, M. G., & Mokpokpo Fiaboe, K. K. (2021). Natural enemies of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in different agro-ecologies. Insects, 12(6), 1–23. https://doi.org/10.3390/insects12060509
Ahissou, B. R., Sawadogo, W. M., Bonzi, S., Baimey, H., Somda, I., Bokonon-Ganta, A. H., & Verheggen, F. J. (2021). Natural enemies of the fall armyworm Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in Burkina Faso. Tropicultura, 39(3), 1–21. https://doi.org/10.25518/2295-8010.1881
Ashok, K., Balasubramani, V., Kennedy, J. S., Geethalakshmi, V., Jeyakumar, P., & Sathiah, N. (2021). Effect of elevated temperature on the population dynamics of fall armyworm, Spodoptera frugiperda. Journal of Environmental Biology, 42(4). https://doi.org/10.22438/jeb/42/4(SI)/MRN-1525a
Cabrera-Asencio, I., Viteri, D. M., & Linares-Ramírez, A. M. (2023). ARCHYTAS MARMORATUS (TOWNSEND) AND LESPESIA SPP. (DIPTERA: TACHINIDAE) PARASITOIDS OF SPODOPTERA FRUGIPERDA (J.E. SMITH) (LEPIDOPTERA: NOCTUIDAE) ON ZEA MAYS L. IN SOUTHERN PUERTO RICO. The Journal of Agriculture of the University of Puerto Rico, 107(2), 187–190. https://doi.org/10.46429/jaupr.v107i2.21243
Deshmukh, S., Pavithra, H. B., Kalleshwaraswamy, C. M., Shivanna, B. K., Maruthi, M. S., & Mota-Sanchez, D. (2020). Field Efficacy of Insecticides for Management of Invasive Fall Armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on Maize in India. Florida Entomologist, 103(2), 221. https://doi.org/10.1653/024.103.0211
dos Santos, C. A. M., do Nascimento, J., Gonçalves, K. C., Smaniotto, G., de Freitas Zechin, L., da Costa Ferreira, M., & Polanczyk, R. A. (2021). Compatibility of Bt biopesticides and adjuvants for Spodoptera frugiperda control. Scientific Reports, 11(1), 1–8. https://doi.org/10.1038/s41598-021-84871-w
Fiaboe, K. R., Fening, K. O., Kofi Gbewonyo, W. S., & Deshmukh, S. (2023). Bionomic responses of Spodoptera frugiperda (J. E. Smith) to lethal and sublethal concentrations of selected insecticides. PLoS ONE, 18(11 November), 1–21. https://doi.org/10.1371/journal.pone.0290390
García-González, F., Rios-Velasco, C., & Iglesias-Pérez, D. (2020). Chelonus and Campoletis Species as Main Parasitoids of Spodoptera frugiperda (J.E. Smith)1 in Forage Maize of Lagunera Region, Mexico. Southwestern Entomologist, 45(3). https://doi.org/10.3958/059.045.0306
Garlet, C. G., Moreira, R. P., Gubiani, P. da S., Palharini, R. B., Farias, J. R., & Bernardi, O. (2021). Fitness Cost of Chlorpyrifos Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on Different Host Plants. Environmental Entomology, 50(4), 898–908. https://doi.org/10.1093/ee/nvab046
Guan, F., Zhang, Z., Lin, Y., Liu, X., Wang, X., Yang, Y., Carrière, Y., & Wu, Y. (2023). Susceptibility and diagnostic concentration for Bacillus thuringiensis toxins and newer chemical insecticides in Spodoptera frugiperda (Lepidoptera: Noctuidae) from China. Journal of Economic Entomology, 116(5), 1830–1837. https://doi.org/10.1093/jee/toad176
Haq, I. U., Muhammad, M., Yuan, H., Ali, S., Abbasi, A., Asad, M., Ashraf, H. J., Khurshid, A., Zhang, K., Zhang, Q., & Liu, C. (2022). Satellitome Analysis and Transposable Elements Comparison in Geographically Distant Populations of Spodoptera frugiperda. Life, 12(4). https://doi.org/10.3390/life12040521
Herlinda, S., Gustianingtyas, M., Suwandi, S., Suharjo, R., Sari, J. M. P., & Lestari, R. P. (2021). Endophytic fungi confirmed as entomopathogens of the new invasive pest, the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), infesting maize in South Sumatra, Indonesia. Egyptian Journal of Biological Pest Control, 31(1). https://doi.org/10.1186/s41938-021-00470-x
Idrees, A., Qadir, Z. A., Afzal, A., Ranran, Q., & Li, J. (2022). Laboratory efficacy of selected synthetic insecticides against second instar invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. PLoS ONE, 17(5 May), 1–14. https://doi.org/10.1371/journal.pone.0265265
Kelita Phambala, Y. T., & Philip C Stevenson, & S. R. B. T. K. V. H. K. (2020). Bioactivity of Common Pesticidal Plants on Fall. Plants, 9(112), 1–10.
Kenis, M. (2023). Prospects for classical biological control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in invaded areas using parasitoids from the Americas. Journal of Economic Entomology, 116(2), 331–341. https://doi.org/10.1093/jee/toad029
Lee, K., McDermott, S., & Fernandez, L. (2024). Using economics to inform and evaluate biological control programs: opportunities, challenges, and recommendations for future research. In BioControl (Vol. 69, Issue 3). https://doi.org/10.1007/s10526-024-10244-7
Li, Y. P., Yao, S. Y., Feng, D., Haack, R. A., Yang, Y., Hou, J. L., & Ye, H. (2023). Dispersal Behavior Characters of Spodoptera frugiperda Larvae. Insects, 14(6). https://doi.org/10.3390/insects14060488
Liu, Z. K. (2022). Sublethal effects of emamectin benzoate on Spodoptera frugiperda ( Lepidoptera : Noctuidae ). Agriculture, December 2018, 959–971.
Makgoba, M. C., Tshikhudo, P. P., Nnzeru, L. R., & Makhado, R. A. (2021). Impact of fall armyworm (Spodoptera frugiperda) (J.E. Smith) on small-scale maize farmers and its control strategies in the Limpopo province, South Africa. Jàmbá Journal of Disaster Risk Studies, 13(1). https://doi.org/10.4102/jamba.v13i1.1016
Oh, I. S. (2020). Beyond Meta-Analysis: Secondary Uses of Meta-Analytic Data. In Annual Review of Organizational Psychology and Organizational Behavior (Vol. 7). https://doi.org/10.1146/annurev-orgpsych-012119-045006
Papadimitropoulou, K., Stijnen, T., Riley, R. D., Dekkers, O. M., & le Cessie, S. (2020). Meta‐analysis of continuous outcomes: Using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment‐by‐baseline modification. Research Synthesis Methods, 11(6), 780–794. https://doi.org/10.1002/jrsm.1434
Paredes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V. (2021). Advances in control strategies against Spodoptera frugiperda. A review. In Molecules (Vol. 26, Issue 18). https://doi.org/10.3390/molecules26185587
Perier, J. D., Haseeb, M., Kanga, L. H. B., Meagher, R. L., & Legaspi, J. C. (2022). Intraguild Interactions of Three Biological Control Agents of the Fall Armyworm Spodoptera frugiperda (JE Smith) in Florida. Insects, 13(9), 815. https://doi.org/10.3390/insects13090815
Pinkie, C., Devika, J., & Majidha, P. A. (2021). Bibliometric Analysis and Challenges in Biofuel Production using Petroplants. Journal of Renewable Energies, 221(Special Issue). https://doi.org/10.54966/jreen.v1i1.1056
Pittarate, S., Rajula, J., Rahman, A., Vivekanandhan, P., Thungrabeab, M., Mekchay, S., & Krutmuang, P. (2021). Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects, 12(11), 1–11. https://doi.org/10.3390/insects12111017
Qi, H., Rizopoulos, D., & van Rosmalen, J. (2022). Incorporating historical control information in ANCOVA models using the meta‐analytic‐predictive approach. Research Synthesis Methods, 13(6), 681–696. https://doi.org/10.1002/jrsm.1561
Sisay, B., Tefera, T., Wakgari, M., Ayalew, G., & Mendesil, E. (2019). The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize. Insects, 10(2). https://doi.org/10.3390/insects10020045
Smith, J. E., Noctuidae, L., Ahmed, K. S., Idrees, A., Majeed, M. Z., Majeed, M. I., Shehzad, M. Z., Ullah, M. I., Afzal, A., & Li, J. (2022). Synergized toxicity of promising plant sxtracts and synthetic chemicals against fall armyworm Spodoptera frugiperda. Agronomy, 12(1289).
Stenberg, J. A., Sundh, I., Becher, P. G., Björkman, C., Dubey, M., Egan, P. A., Friberg, H., Gil, J. F., Jensen, D. F., Jonsson, M., Karlsson, M., Khalil, S., Ninkovic, V., Rehermann, G., Vetukuri, R. R., & Viketoft, M. (2021). When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science, 94(3), 665–676. https://doi.org/10.1007/s10340-021-01354-7
Tay, W. T., Meagher, R. L., Czepak, C., & Groot, A. T. (2023). Spodoptera frugiperda : Ecology, Evolution, and Management Options of an Invasive Species. Annual Review of Entomology, 68(1), 299–317. https://doi.org/10.1146/annurev-ento-120220-102548
Tepa-Yotto, G. T., Chinwada, P., Rwomushana, I., Goergen, G., & Subramanian, S. (2022). Integrated management of Spodoptera frugiperda 6 years post detection in Africa: a review. Current Opinion in Insect Science, 52, 100928. https://doi.org/10.1016/j.cois.2022.100928
Tepa-yotto, G. T., Tonnang, H. E. Z., Goergen, G., Subramanian, S., Kimathi, E., Abdel-rahman, E. M., Flø, D., Thunes, K. H., Fiaboe, K. K. M., Niassy, S., Bruce, A., Mohamed, S. A., Tam, M., Ekesi, S., & Sæthre, M. (2021). Global Habitat Suitability of Spodoptera frugiperda. Parasitoids Considered for Its Biological Control, 2(1).
Yan, X. R., Wang, Z. Y., Feng, S. Q., Zhao, Z. H., & Li, Z. H. (2022). Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change. In Insects (Vol. 13, Issue 11). https://doi.org/10.3390/insects13110981
Yang, F., Wang, Z., & Kerns, D. L. (2022). Resistance of Spodoptera frugiperda to Cry1, Cry2, and Vip3Aa Proteins in Bt Corn and Cotton in the Americas: Implications for the Rest of the World. Journal of Economic Entomology, 115(6), 1752–1760. https://doi.org/10.1093/jee/toac099
Yang, L., Li, F., Xin, L., Xing, B., Pan, X., Shi, X., Li, J., & Wu, S. (2022). Performance of three Trichogramma species as biocontrol agents on Spodoptera frugiperda eggs. Journal of Applied Entomology, 146(8), 1019–1027. https://doi.org/10.1111/jen.13042
Copyright (c) 2024 Edubiologica: Jurnal Penelitian Ilmu dan Pendidikan Biologi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.